言学的教授,尽管刚开始进入谷歌时对语言翻译的工作很不喜欢,但最终还是专注于这一领域的研究,而他近期正在琢磨的便是“自注意力self-attention”在相关领域的改善。
吴恩达很快明白这位谷歌研究员的意思,也在几经思索后给予反驳:“自注意力没有显式地编码位置信息,这就意味着如果以它为核心的模型无法区分序列中相同词语在不同位置的意义差异,而在自然语言的处理中,词语的语义又与位置紧密相关。”
“而且,自注意力模型必然因为序列中每对元素计算的注意力权重而有巨大的参数量,这极可能导致过拟合。”
他这边刚说话,谷歌自家dl的席尔瓦也反驳了乌思克尔特提出的新路线,其中一个重要原因在于rnn的循环结构太符合大家对序列数据处理的理解,即当前状态依赖于过去的信息,而自注意力的全局依赖一看就不如rnn直观。
易科与谷歌的两大领导者都批评了自注意力self-attention,但乌思克尔特并不服气,他直接登台阐述自己更多的想法。
而且,针对吴恩达与席尔瓦抨击的缺点也给出一些解决思路,比如,引入位置编码,比如,进行多头注意力的研究。
有人觉得眼前一亮,有人觉得异想天开,还有人现场进行快速的分析和演算。
第一排的方卓极其茫然,他扭头询问旁边沉思的英伟达掌门人黄仁勋:“他们在讨论什么?”
“乌思克尔特说,gpu是最适合深度学习技术的硬件。”黄仁勋给出一句总结。
方卓:“???”
他纳闷道:“我怎么完全没听到类似的表述?”
“因为自注意力self-attention更加强调并行处理,这是gpu更擅长的。”黄仁勋笑道,“至于其他的,不重要,我们只要提取对我们有利的就好。”
方卓观察着现场的气氛,这已经不是知识的交流,更像是知识的火拼了。
他默默的收起自己在这种场合本就不多的存在感。
只是,等到晚上,方卓还是当面询问了这次参与辩论的吴恩达,想知道这场面红耳赤的讨论都有些什么东西。
吴恩达真的很难和方总解释发生了什么。
“方总,等我们想一想再写一份报告吧。”他思考许久之后由衷地说道,“这样的交流或许应该多来几次,他那个自注意力,我现在想想,缺点也不是不能解决。”
方卓耐心的询问:“那我们应该做些什么?”
吴恩达回味今天的整
本章未完,请点击下一页继续阅读! 第4页 / 共6页